Diffusion of Oligonucleotides from within Iron-Crosslinked Polyelectrolyte-Modified Alginate Beads: A Model System for Drug Release, V. Privman, S. Domanskyi, R. A. S. Luz, N. Guz, M. L. Glasser, E. Katz, ChemPhysChem 17, 976-984 (2016)
نویسندگان
چکیده
ABTRACT: We developed and experimentally verified an analytical model to describe diffusion of oligonucleotides from stable hydrogel beads. The synthesized alginate beads are Fe-cross-linked as well as polyelectrolyte-doped for uniformity and stability at physiological pH. Data on diffusion of oligonucleotides from inside the beads provide physical insights into the volume nature of the immobilization of a fraction of oligonucleotides due to polyelectrolyte cross-linking, i.e., the absence of the surface-layer barrier in this case. Furthermore, our results suggest a new simple approach to measuring the diffusion coefficient of the mobile oligonucleotide molecules inside hydrogel. The considered alginate beads provide a model for a well-defined component in drug release systems and for the oligonucleotide-release transduction steps in drug-delivering and biocomputing applications. This is illustrated by destabilizing the beads with citrate that induces full oligonucleotide release with non-diffusional kinetics.
منابع مشابه
A Biochemical Logic Approach to Biomarker-Activated Drug Release, V. Bocharova, O. Zavalov, K. MacVittie, M. A. Arugula, N. V. Guz, M. E. Dokukin, J. Halamek, I. Sokolov, V. Privman, E. Katz
The present study aims at integrating drug-releasing materials with signal-processing biocomputing systems. Enzymes alanine transaminase (ALT) and aspartate transaminase (AST)—biomarkers for liver injury—were logically processed by a biocatalytic cascade realizing Boolean AND gate. Citrate produced in the system was used to trigger a drugmimicking release from alginate microspheres. In order to...
متن کاملSodium Alginate/Starch Blends Loaded with Ciprofloxacin Hydrochloride as a Floating Drug Delivery System - In Vitro Evaluation
In the present study, Floating Drug Delivery Beads (FDDS) were prepared with sodium alginate/ starch blend as a matrix, sodium hydrogen carbonate as a pore forming agent, methyl cellulose as a binder and barium chloride solution as a hardening agent. In order to prepare the beads with different porosity and morphology the ratio between pore forming agent to polymer blend and ratio of the co...
متن کاملFormulation of Ibuprofen Beads by Ionotropic Gelation
Microencapsulation has become a common technique in the production of controlled release dosage forms. Many results have been reported, concerning the use of alginate beads as controlled release drug formulations. Alginate has a unique gel-forming property in the presence of multivalent cations, in an aqueous medium. Ibuprofen is an excellent analgesic and antipyretic, non-steroidal anti-inflam...
متن کاملFormulation of Ibuprofen Beads by Ionotropic Gelation
Microencapsulation has become a common technique in the production of controlled release dosage forms. Many results have been reported, concerning the use of alginate beads as controlled release drug formulations. Alginate has a unique gel-forming property in the presence of multivalent cations, in an aqueous medium. Ibuprofen is an excellent analgesic and antipyretic, non-steroidal anti-inflam...
متن کاملEnantioselective Release Behavior of Ketoprofen Enantiomers from Alginate-metal Complexes, Monitored by Chiral HPLC
Alginate-metal complexes were prepared with divalent (Ca, Ba, Zn) and trivalent metals (Fe, Al) via congealing method in form of beads. Alginate mixed metals (Ca & Fe) complexes were also prepared by simultaneous and consecutive congealing. The studied beads were blank beads and racemic ketoprofen (KTP) loaded beads. Metal content was determined by atomic absorption spectroscopy and was 1.8% to...
متن کامل